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Abstract 

The separation of vectors by multigrid (MG) algorithms is applied to the study of 

convergence and to the prediction of the performance of MG algorithms. The separation 

operator for a two level cycle algorithm is derived. It is used to analyze the efficiency of the 

cycle when mixing of eigenvectors occurs. In particular cases the separation analysis reduces 

to Fourier type analysis. The separation operator of a two level cycle for a Schrödinger 

eigenvalue problem, is derived and analyzed in a Fourier basis. Separation analysis gives 

information on how to chose relaxations and inter-level transfers. Separation analysis is a 

tool for analyzing and designing algorithms, and for optimizing their performance. 
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1      Introduction 

The efficiency of multigrid (MG) techniques in solving large scale eigenvalue problems de- 

rived from discretizations of partial differential eigenvalue problems, was shown in multiple 

works, for example in [1] [3] [13] [16] [18] [20] [21] [27]. 

This work is motivated by the need of tools of analyzing, and designing robust and 

efficient MG eigenvalue solvers. These tools were needed for the algorithms presented in 

[4], [5] [6] [19] [24] and in the reports [7] [8] [9] [10]. The algorithms were applied to elec- 

tromagnetism and Schrödinger eigenvalue problems in 2D and 3D. Their efficiency resides 

in their eigenvector separation effectiveness, i.e., in how well they separate the subspace of 

desired eigenvectors from the remaining eigenvectors and how well they separate the eigen- 

vectors inside this subspace. These naturally hint to analyze how a procedure separates 

given eigenvectors, i.e., how it acts on the amplitudes of the eigenvectors, or more generally 

on the amplitudes of a basis of vectors. The action of an algorithm on the amplitudes of 

the vectors of a basis is called the separation operator. Separation factors, showing the 

amplification of one vector with respect to another one, can be used to define and analyze 

different convergence rates. In particular cases, Fourier analysis can be used to compute 

separation factors. Separation analysis does not reduce to convergence analysis only; for 

example, one may have divergence of relaxations but good separation, and separation de- 

termines the efficiency of the algorithm. Convergence results are obtained, which can be 

applied directly to show the convergence of single level or multilevel algorithms. The results 

are used for the analysis of a two level separation operator which defines the action of a 

two level algorithm on the amplitudes of given vectors. For eigenvalue problems, a major 

issue is the "mixing" of eigenvectors due to inter-level transfers. It is shown that better 

convergence is obtained if the mixing is small or when all eigenvectors which get mixed are 

treated together, e.g., in case of clusters. 

An example of separation analysis which reduces to a Fourier type analysis of the two 

level separation operator is presented. This is used in the design of MG eigenvector algo- 

rithms and in the prediction of their performance. For the Schrödinger eigenvalue problem 

with periodic boundary conditions, the analysis calculates accurately the convergence fac- 

tors. The matrix of the separation operator can be computed by a subroutine and the 

efficiency of the algorithm can be optimized analyzing the separation operator as a func- 

tion of several parameters such as relaxation types, iteration numbers. 

For MG techniques and more on MG eigenvalue algorithms we refer to [2] [3] [16]. An 

outline of general MG approaches related to separation and MG optimization is presented 

in [12] [25]. For eigenvalue algorithms and theory on algebraic eigenvalue problems we refer 

to [17] [23] [26] [14]. 
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2     The Separation Operator, Separation Factors and 

Convergence Rates 

A central goal is to analyze the action of an algorithm on the amplitudes of given vectors, 

for example on the eigenvectors of a given matrix. This action is defined by the separation 

operator. The separation operator can be used in the analysis of convergence and in the 

optimization of the algorithm. 

2.1      The Separation Operator and Separation Factors 

Assume that the n x n matrix U has independent columns Uu...,Un. For example Ui may 

be Fourier components or the eigenvectors of a given matrix. Assume that an algorithm 

transforms the vector UB into the vector UB, where B and B denote vectors of dimension 

n. Thus B and B are the amplitudes of Ux,..., Un before and after the algorithm is applied. 

The algorithm defines a mapping 

WB = B (2.1) 

W is the mapping of the amplitudes of the vectors U under the action of the algorithm. 

The mapping W will be called the Separation Operator. The W may not be linear, e.g., 

for MG algorithms which employ projections. For particular MG cycles W is linear and 

will be computed in next sections. 

Consider further the case when W is an n x n diagonalizable matrix with normalized 

eigenvectors E\,...,En corresponding to the eigenvalues pi,...,fin. For simplicity assume 

that |/ii| > \ß2\ > ■•■ > \ßn\ > 0, although the further analysis can be performed in a 

similar way for the general case too. E\ will be called the dominant eigenvector of W. 

For given vectors B = (bu..., bn)T, B = WB = {h,..., bn)
T define the separation 

factor of Ui relative to Uj and to B by 

>ij,B = (h/hywbj) (2-2) 

when this is meaningful, (i.e., when bj / 0, bj ^ 0, or define 0 and oo values when only one 

is 0). Implicitly, the S^B depends on W also. 

It will be said that Uz is amplified by B if 6,- ^ 0. Denote by epm the p'th component of 

the eigenvector Em. Define the asymptotic separation factor of Ui relative to Uj by: 

sij = fit/m (2-3) 

where t = min{m : etm / 0} and / = min{m : ejm / 0}. The t and / in the definition of 

Sij, show the first (smallest index) eigenvectors Et and E\ which amplify Ui, respectively 



Uj. It will be also said that Et is the first eigenvector amplifying Ui. If Et is the eigenvector 

amplifying first both Ui and Uj then 

Sij   =   1 (2.4) 

*:&    =    1 (2-5) 

2.2      Convergence of the Iterative Algorithm 

If an algorithm with separation operator W is iteratively applied starting with UB°, then 

the same results can be obtained by iterating W starting with B°. Thus the iteration of 

the algorithm reduces to a power iteration for W, just in the space of the amplitudes. The 

algorithm may be complicated but the power iteration is very simple (even for nonlinear 

W the same power iteration applies). The power iteration can be analyzed if W is known. 

Consider the representation of an algorithm by the iterations on W, in which the vector of 

amplitudes is normalized at each iteration (not necessary but to keep the norms bounded): 

Fourier Power Iterations 

B° = B 

For k = 1,2,... do: 

1) Bk = WBk~l 

2) Bk = Bkl\\Bk\\ 

3) Uk = UBk 

The following lemma shows towards what converge the Power Iterations and the algo- 

rithm, and shows the relative convergence rates. 

Lemma 1 In the Fourier Power Iterations algorithm, if E\ is the dominant eigenvector 

of W and if B° is not defective in E\ then: 

1) Bk converges to E\, 

2) Uk converges to UE\. 

3) If B° is not defective in the first eigenvectors amplifying Ui and Uj then: 

Sij,Bk ~^ sij (2-6) 

Proof 1) is obvious since E\ is the dominant eigenvector of W. Thus 2) holds. Let 

B° = E^=i amEm with 0l # 0. Then Bk = £^=i am[LkmEm. Assume that Et and El 

are the first eigenvectors amplifying Ui respectively Uj. The at and a\ are nonzero by the 

hypothesis 3). Then for sufficiently large k the denominator is not 0 and 

S,j,B* = (E^=iam^+1eim)(E^=/am^e;m)/((Em^am/im+le^)(E^=tGrn^eim)) -> ßtjm = 



In typical situations, e.g., in eigenvalue algorithms, it is desired that Uk converges to 

U\. Different convergence rates can be denned using W, its eigenvalues and eigenvectors, 

and the separation factors. Define the asymptotic convergence rate of Uk towards U\ by 

c\ = sup limk-^oo max ll/s^g*! (2-7) 
Bo j=2...n 

where the B° in the sup is not defective in any of the eigenvectors. 

The following corollary is obtained directly: 

Corollary In the Fourier Power Iterations Uk converges to U\, for any B° nondefective 

in Ei, if and only if Ei = (1,0,..., 0)T. In case of convergence, the asymptotic convergence 

rate is c\ = j/x21/1 A*i I - 

OBSERVATIONS 

The following two examples, when the convergence rate can be very good, motivate the 

above discussion: 

1) The inverse power algorithm for eigenvalue problems: 

AU = UA (2.8) 

where U are the eigenvectors of A associated to the eigenvalues of A = diag(\i,..., An). The 

inverse power algorithm iterates the operator (A-QI)'1 starting with UB° and normalizes 

the result at each step, for $ « Ax. This corresponds to a Fourier Power Type algorithm 

where W = diag{l/(Xi - $)), (since (A - §I)-lUB = UWB = UB), and with another 

normalization at step 2) (for which a similar result can be shown). The eigenvectors of W 

are E{ = Ui and the eigenvalues are //,- = 1/(A,- - $). In this case the convergence rate is 

very good: |$ - Ax|/|$ - A2| « 0; 

2) An MG Eigenvalue Cycle, where one may expect a similarly good convergence rate since 

the MG cycle can be viewed as an approximation to the inverse power iteration. Such an 

operator will be analyzed next, for a Two Level Cycle algorithm. 

3    Separation Analysis of the Two Level Cycle 

Algorithm 

This section derives and analyses the separation operator for a two level MG cycle algebraic 

algorithm. The cycle has the following useful features: 

1) The algorithm is algebraic and has no relation with any grid representation, neither the 

problems should be finer or coarser, the operators and transfers are general matrices; 



2) The algorithm is simultaneous for several solutions, leading to a generalization of the 

separation setting from previous section; 

3) The simultaneous algorithm has advantages over the corresponding sequential algorithm, 

e.g., it can incorporate on any level simultaneous separation techniques; 

4) The form of the algorithm is general so that the algorithm and its analysis can be used 

not only for eigenvalue problems but for system solvers too. 

In this cycle q solutions are treated simultaneously, thus the amplitudes matrix B has 

dimensions n x q. The names coarse level and fine level are used only to distinguish the 

two levels and because these names are used often in connection with MG algorithms. 

3.1      The Two Level Cycle Algorithm 

Suppose that A, U, A are n x n matrices, and that A', U', A' are m x m matrices such 

that: 

AU   =   UK (3.9) 

A'U'   =   U'M (3.10) 

where if, U' are the eigenvectors of A, A' respectively, corresponding to the diagonal 

matrices of eigenvalues A and A'. In case of equal eigenvalues, the eigenvectors will be 

chosen to be linearly independent. Let P and R be two relaxation polynomials such that: 

P{A)U   =   UP(A) (3.11) 

R{A')U'   =   U'R(A') (3.12) 

There are given the transfer matrices J and / such that: 

JU   =   U'G (3.13) 

W   =   UF (3.14) 

where J and G are m x n matrices while / and F are n x m matrices. 

Assume given an n x q matrix, B, a diagonal q x q matrix <&, and an n x q matrix 

U1 = UB of initial solutions. 

Consider the following Two Level Cycle: 

Two Level Cycle (Ul,Ü) 

Input U1 = UB 

1) Relax U2 = P{A)Ul 

2) Compute the residual: S = U2§ - AU2 



3) Transfer the residual: S' = JS 

4) Transfer the solution: Un = JU2 

5) Compute the FAS right hand side: V = R(A')Un + JS 

6) Solve (or Relax) the coarse level equation: R(A')U'2 = V 

7) FAS - Correct the fine level solution: U3 = U2 + I(U'2 - JU2) 

8) Relax: Ü = P(A)U3 

Output Ü 

OBSERVATIONS 
1) The step 6) can be considered as a relaxation: U'2 = R(A')~lT' 

2) The algorithm can be continued on other levels in the same way. 

3) A projection can be introduced at certain steps, multiplying the solution by a q x q 

matrix E. Since E depends on the solutions, the algorithm would become nonlinear in B, 

making the next analysis more difficult. 

4) Different relaxations can be used at steps 1) and 8). 

5) The FAS (Full Approximation Scheme) transfers at steps 5) and 7) follow the scheme: 

the problem F'(U') = V is an FAS transfer of the problem F{U) = T\iT = F'(JU) + 

J(T--F(U)); and the corresponding FAS correction reads U = U + I(U' - JU), see [2]. 

3.2      The Two Level Cycle Separation Operator 

This subsection computes the separation operator W for the algebraic Two Level Cycle. 

The two level algorithm transforms the initial solution U1 = UB into the final solution 

Ü = UB.  Since the columns of U are independent, the B is uniquely determined for the 

given Ü, allowing to define as in previous section 

The Two Level Cycle Operator W by: 

WB = B (3.15) 

Denote by In the n x n identity matrix. Assume that R(A') is invertible and denote its 

inverse by R~1{A'). The operator W can be computed directly from the above algorithm 

and from (3.11-3.14) and is given by: 

Theorem 
1) The Two Level Cycle Separation Operator W is defined by: 

WB = P(A)( P{k)B + FR-1(A')G{P(A)B^ - AP{A)B) ) (3.16) 

2) Ifq = l then 

W = P(A)( In + FR-'iA'WQIn - A) )P(A) (3.17) 



Proof  Since U1 = UB, the relations (3.11-3.14) imply: 

U2 = P{A)Ul = P{A)UB = UP(A)B (3.18) 

,5 = u*§ _ AU2 = U{P(A)B$ - AP(A)B) = UX (3.19) 

where 
X = P(A)B$ - AP(A)B (3.20) 

The transfers give:, 

Ua   =   JU2 = JUP{A)B = U'GP{A)B (3.21) 

JS   =   JUX = U'GX (3.22) 

and solving the coarse level equation: 

R{A')U'2 = R(A')Un + JS (3.23) 

U'2 = Un + R-l{A')JS = JU2 + R-l{A')JS = JU2 + U'R-\A')GX (3.24) 

Then the FAS - Correction reads: 

U3   =   U2 + I{U'2-JU2) = U2 + IU'R-1(A')GX (3.25) 

U3   =   U(P(A)B + FR-1{A')GX) (3.26) 

and the final relaxation implies: 

Ü = P(A)U3 = UP(A)(P(A)B + FR-\A')GX) = UB (3.27) 

Hence: 
B = P{A){P{A)B + FR-1{A')GX) (3.28) 

Substituting X, the point 1) of the theorem is obtained: 

WB = B = P(A)( P{A)B + FR-1{A')G{P(A)B^ - AP(A)B) ) (3.29) 

For the case q = 1, $ is a scalar and commutes with P(A)B thus point 2) results. 

Iterating the Two Level Cycle the following algorithm is obtained: 

Two Level Iterations 

Input U1 = UB, $ 
for k = 1,2,... do: 

1) Two Level Cycle (Uk,Uk+1) 
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2) Normalize the columns of Uk+l 

OBSERVATIONS 

1) For the Two Level Iterations algorithm holds a Fourier Power Iterations algorithm as 

described in section (2). 

2) As in the Corollary of Lemma 1, for q = 1, the convergence criteria is obtained: 

Lemma 2  In the Two Level Iterations, Uk converges to U\, for any initial U1 nondefec- 

tive in U\, if and only ifW has the dominant eigenvector (1,0,..., 0). The single difference 

consists in the normalization of Bk by Bk = Bk jck where ck is a constant for normalizing 

the solutions. 

3) Denoting B — (&i,..., bn)T, the k component of the vector WB is: 

n     m 

(WB)k = P\Ak)bk + P(Ak)EZ(FKR~1(K)Gij)(* ~ ^)P(^)bj (3.30) 
j=l i=l 

This formula will be used in the following sections. 

3.3    Separation Factors in case of Mixing 

In this paragraph the separation factors are analyzed in a case when the first two vectors 

of U are mixed by W during the transfers, but are not mixed with other vectors, i.e., the F 

and G have the structures from (3.31, 3.32). It will be shown that the mixing damages the 

separation, nevertheless the algorithm may be efficient for proper choices of relaxations. 

Assume that q =1,   B = (6i,62,0, ...0)T and: 

G 

I   1     Gi2   0...0 \ 

<?21      1      0...0 

0       0 

* 

V  o     o / 

(3.31) 

F 

(   1     F12   0...0 \ 

F21     1     0...0 

0      0 

* 

^   0       0 

(3.32) 



The first two components of WB will be: 

(WB^   =   P2(A1)61 + P(A1)((i?-1(A'1) + F12JR-1(A/
2)G21)($-A1)P(A1)61 + 

+(R-1(A[)GU + JF12i?-1(A2))($ - A2)P(A2)62 (3.33) 

(WB)2   =   P2(A2)&2 + P(A2)((F21i?-1(A'1) + i?-1(A'2)G21)($-A1)P(A1)&1 + 

+(F2ifr
1(A'1)G12 + Ä-1(A'2))($ - A2)P(A2)62 (3.34) 

Assume that the Richardson relaxation is used for A: 

P(A) = I + üü{A-§) (3.35) 

such that 

P(A*) = l+ü;(Afe-$)«l (3.36) 

and the inverse power iteration is used for A1: 

R(A') = A'-$,    R{Ak) = A'k - <S> (3.37) 

To simplify the analysis it is assumed that: 

$ « Ai (3.38) 

P{Ai) « 1 (3.39) 

($-A2)/(A'2-$)«-l (3.40) 

A; « AI (3.41) 

The next approximation is obtained for the first two components (the rest of the matrix is 

not relevant and ignored further): 

Where 

7 = G12($ - A2)/(A; - $) (3.43) 

If C?i2 is not zero then 7 may be large since Aj — $ is small. The two eigenvalues of 

the above W are //1 = 1 and y«2 = 7P21 corresponding to the eigenvectors Ei = (1,0)T 

and E2 = ((—7 + Fu)/(l — 7P21), 1)T- If 1 > |^2| then iterating the two level cycle, the 
solutions UBk will converge to Ui, by Lemma 2. If 1 < |/i2| then the iterations will converge 



to (U1, U2)E2. In the case 1 < |^2|, the separation can be improved by: 

1) improving the relaxation or the transfers (e.g., preconditioning the transfers or using 

higher order transfers), these leading to 1 > |yu2|; 

2) treating simultaneously the vectors Ui and U2 and separating them by a Rayleigh-Ritz 

type projection as shown for example in [5] [8] and analyzed in [10]. 

The asymptotic convergence rate in the case 1 > |//2| is 

\H2/^\ = \H2\<1 (3-44) 

which can be good, e.g., if Gi2F21 is small, but can be close to 1 if 7 is large. Nevertheless 

the convergence in the first few cycles may be very good as shown by the relative separation 

factor. If at the beginning 6X = b2 = 1 and 7 is large, then SU,B = (1 + 7 - F12)/(^/F2i) « 

I/F21. In this case the separation factor of U\ relative to U2 is approximately 1/Fn which 

may be very good. A better separation is obtained if G\2 ~ 0, when 7 « 0 thus the 

separation factor is (1 - F^/ifFu) « 00. In the latter case, when low mixing appears 

due to G12, the cycle separates well the first eigenvector from the second one in the first 

iteration. An important observation is that in this case the role of the relaxation by P is 

negligible, the good separation being due mainly to the good transfer G12 « 0 and to the 

good approximation of the eigenvalue Ai « $. 

3.4    Separation Factors for Decoupled Components 

To show the good efficiency of the MG cycle in the case when the eigenvectors are not 

mixed during the transfers, the previous example in which the mixing coefficients are 0 is 

considered: 

Gl2 = G21 = Fl2 = F21 = 0 (3.45) 

A more accurate estimate of the relative separation factor for 61 = b2 = 1 and by (3.33,3.34) 

is: 

[1 + (* - Aa)/(Ai - *)]/[l + (* - A3)/(A'2 - *)] = [AI-^KAT
2
-^) (3'46) 

which is large in the following assumptions which are met especially in MG algorithms 

where $ is obtained from coarser levels by an FMG algorithm [2] [5] [6]: 

A'2 - A2 « 0 (3.47) 

(A'1-A1)/(Ai-$)«l (3.48) 

|A2 - $| > 0 (3.49) 
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OBSERVATION 
The efficiency of the two level cycle may be very good also in case of close eigenvalues, 

when $ approximates well the eigenvalue Ai and when the two levels have close eigenvalues 

A'2 ~ A2. This is an explanation of the highly accurate separation obtained in numerical 

tests for problems presenting very close eigenvalues [4] [5] [6] [8]. The good separation 

obtained by the MG cycle may also explain why projections were not required on fine 

levels even for clusters of very close eigenvalues [4] [5] [6] [8]. 

4    Example of Fourier Analysis of the Two Level 

Separation Operator 

In some cases, especially for discretizations of partial differential equations on regular grids, 

the two level separation operator can be computed and analyzed using for U Fourier compo- 

nents, as shown in the next example. This provides insight for the design of the algorithms 

and to the prediction of the algorithms performance. 

4.1    The Two Level Separation Operator 

The two level separation operator W for the algebraic two level cycle, in the common 

assumption n — 2m, is presented next. For n = 2m the matrices F and G have the forms 

F = (Fi,F2)
T, G - (Gi,G2), with m x m matrices Fi, F2, Gi, G2. Further, Id will 

denote the identity matrix. It is assumed q = 1, so W has the form (3.17). Denote 

A=      n     4 (4-50) 

where Ai,   A2 are m x m diagonal matrices. In this case (3.17) provides: 

„r      i WH    W12\ , W = 4.51 
l  W21   W22 

K       ' 

with 

Wu = P{A1)(Id + FlR-1(A')G1($Id-A1))P(A1) (4.52) 

W22 = P(A2)(Id + F2R-\A')G2($Id-A2))P(A2) (4.53) 

W12 = P{A1)F1R-1{A')G2{^Id-A2))P{A2) (4.54) 

W21 = P(A2)F2i?-1(A')G1($/(/-A1))P(A1) (4.55) 

11 



4.2    The Two Level Separation Operator for the Schrödinger 

Eigenvalue Problem 

The two level separation operator for the Schrödinger Eigenvalue Problem in 1-D, with 

periodic boundary conditions, is derived further. For 2-D and 3-D similar derivations hold. 

The problem is: 
AU = UA (4.56) 

on the interval [0,27r]. The operators A and A' are the discretizations of the Laplacian, 

with the stencil (1-2 1 )/h2, on two grids with 2m (respective m) equally spaced points. 

The complex eigenvectors and the corresponding eigenvalues are considered: 

Uk{l)   =   exp{i2-Kkl/2m),   Xk = - — (1 - cos(27rfc/2m)),   k = 0,..., 2m - 1 (4.57) 

U'k{j)   =   exp(i2Trkj/m),   A', = --^(l-cos(27rA:/m)),   k = 0, ...,m - 1 (4.58) 

The eigenvalues are negative, ranging from A0 = 0 to the size of Am = —A/h , where 

h - 2ir/(2m) is the fine mesh size. The eigenvalues satisfy 

Am_fc = Am+jt,    A^ = A2m-fc,   fc = 0,...,m-l (4.59) 

The real and imaginary parts of the complex eigenvectors are the real eigenvectors: 

Ur
k(l) = cos(i2xkl/2m),    k = 0, ...,2m - 1 (4.60) 

Ui(l) = 3in(i2irkl/2m),    k = 1, ...,2m - 1, k ^ m (4.61) 

where Vr
2m_h = Ur

m and Uz
2m_k = -Ul

m. The analysis can be done for the real eigenvectors 

but it is more convenient computationally to use the complex ones. The real eigenvectors 

can be used in programs which build W and analyse the separation. 

The transfer J is the full weighting operator with stencil (12 1 )/4. I is the linear 

interpolation operator. Then the matrices Fx, F2, Gi, G2 are diagonal and all elements of 

F and G are zero except for k = 0,..., m — 1: 

Gkk - (l + cos(7rfc/m))/2 (4.62) 

Gk,k+m = (l-cos(irk/m))/2 (4.63) 

Fkk = (l + cos(7tk/m))/2 (4.64) 

Fk+m,k = (1 - cos(7rÄ:/m))/2 (4.65) 

since the transfers imply for k = 0,..., m - 1,   j = 0,..., m - 1: 

(Uk(2j - 1) + 2Uk(2j) + Uk(2j + l))/4 = U'k{j)(l + cos(7rk/m))/2 (4.66) 

12- 



(Uk+m(2j - 1) + 2Uk+m(2j) + Uk+m(2j + l))/4 = [/((j)(l - cos(7rA;/m))/2 (4.67) 

Uk(2j) = U'k(j) "   (4.68) 

^(2J + 1) = (^(J) + ^0- + 1))/2 (4.69) 

thus 

JUk   =   U'kGkk,   fc = 0,...,m-l (4.70) 

JUk+m   =   U'kGk,k+m,   k = 0,...,m~l (4.71) 

/^   =   i^fcC/jb + i^+m.ti/jfe+m,   fc = 0,...,m-l (4.72) 

Then the elements of the operator W become: 

Wu = diag{P{\k)(\ + FkkR-\\'k)Gkk{§ - \k))P{\k)) (4.73) 

VF22 = diag{P{\k+m){l + Fk+m,kR-\\'k)GkMm{^ - \k+m))P{\k+m)) (4.74) 

W12 = diag{P{\k)FkkR-\\'k)GKk+m{<$> - Xk+m)P(Xk+m)) (4.75) 

W21 = diag{P{\k+m)Fk+m,kR-\\'k)Gk,k($-\k)P{\k)) (4.76) 

4.3      Analysis and Optimization of the Two Level Cycle 

The W operator (4.73-4.76) is used to analyse and optimize the two level cycle algorithm. 

R is taken the shifted inverse power operator 

Ä-1(A'fc) = l/(A'fc-$) (4.77) 

The relaxation operator is taken 

P(A) = Id + io{A-^) (4.78) 

then 

P{\k) = 1 + u>{\k - $) (4.79) 

Assume that 

u = a/\\max\ = ah2/4 (4.80) 

where a will be chosen in a convenient way.   To analyze the relaxation note that the 

asymptotic separation factor of Ui relative to Uj and to the relaxation is 

_    |1 +u(\j - A)| _ \\\max\ + a(Xj - A)| 

\l+U}{Xj-X)\ \\Xmax\ + a(\j - X)\ 
(4M) 

a(\j — A,) 
ll-TT }'   n

J    J (4.82) 
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It follows that if A,- « Xj then si} « 1 thus the relaxation will be very slow in separating 

Ui from Uj. If A, is close to Ax and Xj is close to Xmax then s0- « |1 - a/(l + a)|. Thus the 

relaxation is more efficient in separating far clusters. Within clusters another separation 

technique, like a Generalized Rayleigh Ritz projection, or MG projections, or an MG cycle is 

required, see for example [5] [8] [10]. An essential property of the relaxation is the damping 

of errors coming from eigenvectors which are not well represented on coarser levels. This 

is called the smoothing property of the relaxation. If U is a smooth vector and Uj is a 

component of the error, then Uj is damped by each relaxation with the separation factor 

Sij. 

Next computation finds an a such that the separation factors sok > ß > 1 f°r aU 

nonsmooth components Uk, assumed A = A0 = 0. Recall from (4.57) that the nonsmooth 

components Uk have the frequencies TT/2 < 6 = nk/m < 3TT/2 corresponding to m/2 < 

k < 3m/2  and to   |Ama*| = |Am| = 4//i2. Then 

W = |2/(2-a(l-cos(7rÄ;/m))| (4.83) 

The extreme values of |s0fc| are obtained for 2rkj2m = 0 = TT/2 and T, thus k = m/2 

respective m, for which \s0m/2\ = |2/(2 - a)| and \s0m\ = |1/(1 - a)\. Both TT/2 and IT 

components can be separated by relaxation from U0 with the factor |s0m/2| = \som\ = 3 if 

a = 4/3 (4.84) 

Moreover, one ralaxation will damp all high frequency components by a factor larger than 

1/3. If a multilevel cycle damps well the smooth components of the errors, on coarse lev- 

els where these components can be well represented, and does not amplify the oscillatory 

components, then the cycle should have a separation factor of (1/3)", for fx relaxations per- 

formed on the fine level. This factor may not be obtained in case of mixing of eigenvectors, 

and in the case when not all smooth components are damped well, e.g., the frequencies 

close to the frequencies of the desired eigenvectors, are damped slowly by the relaxation. 

OBSERVATIONS 

1) The WB is 

B2 j      \ W2iB1   W22B2 

Thus if W21 is not small enough then the large coefficients of the smooth components, B\, 

of order 1, will imply large coefficients B2 of the nonsmooth errors. The factors of W2\ 

which can be improved in (4.76) are 

P(Xk+m)Fk+m,k (4.86) 
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This can be done by changing the value of a, say close to 2, to damp more efficiently the 

frequencies close to 7r/2,37r/2, which are multiplied with 1/2 by transfers. 

2) The relaxation can be improved also using a combination of relaxations with different 

values of a which will damp different frequencies. 

3) Changing the relaxation with one having better smoothing properties, of GS type, 

showed large improvements in computer experiments. 

4) Preconditioning of the transfers can be used to reduce the amplitudes of the oscillatory 

components. For example smoothing can be introduced before the transfer, say using a sten- 

cil ( 1 2 1 )/4 which multiplies the Fourier components with the factor (1 + cos(irk/m))/2. 

5) Higher order interpolations can be used to reduce the Gk,k+m terms. 

6) The algorithm can be optimized using a subroutine which computes the matrix W, for 

different parameters such as A, a, number of relaxation, coarse level relaxation type. An 

optimization search for parameter combinations providing an efficient multilevel cycle can 

be easily performed having such a subroutine. An observation which reduces much the 

analysis of W is that W has the desired eigenvector (1,0, ....0)r iff its first column is a 

multiple of this vector. An optimization approach can be directed towards the treatment 

of the first column. 

7) An analysis similar with the one performed for the first vector can be performed for 

the first cluster. The elements below the block corresponding to this cluster should be 0 to 

avoid mixing with other clusters. The block corresponding to the cluster may have nonzero 

subdiagonal elements. This suggests that a separation inside the cluster is required. This 

separation can be performed on coarse or on fine levels. 

8) The analysis of W can show what clusters have to be completed and which components 

have to be treated simultaneously. This is important for robustness and efficiency. It is 

simple to observe that the algorithm can be very efficient in converging to a complete clus- 

ter, treated simultaneously, while it will fail if it will treat only one of the components. A 

comparison between a simultaneous and a sequential algorithm can be performed using W. 

9) If a cluster mixes with a second cluster it is an indication to include the second cluster 

in computation and to treat it simultaneously with the first one. 

10) A complete cluster, which does not mix with another cluster is a good basis for a stable 

subspace technique. 

11) Divergence of some components does not imply that the algorithm is not efficient. Sep- 

aration is important. For example, for finding the second cluster one may have to use in 

computations the first cluster too. The first cluster may diverge but if the two clusters get 

well separated from the remaining components, then an algorithm treating both clusters 

simultaneously should be efficient. 
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12) Divergence can be treated using different relaxations, e.g., which amplify most speci- 

fied components. 
13) The computation of W and the optimization of the algorithm using W can be efficiently 

performed on coarse levels. The computation of W on fine levels is usualy a very expensive 

task but generally not needed, a coarse version of W being sufficient for optimization. 

14) The relative separation factors may be important in an FMG algorithm, and not as 

much the asymptotic factors. In an FMG algorithm for computing Uu the amplitudes B 

come already close to (1,0,..., 0) so that only the relative separation of certain components 

may be relevant, usually the ones which mix with U\. 

15) The separation analysis can be useful also for cases when W is not linear. Two such 

cases are when a projection is used in the algorithm, and when W is a composition of 

separation of operators some of which can be analysed. 

16) The computation of W can be performed in different ways. The presented way, i.e., 

using its analytic form, may not be the best one. A way to compute easily W for different 

changes of the algorithm is required. One way is to compute directly W using the action 

of the algorithm on a basis, e.g., on the columns of U or on the columns of the identity 

matrix. Another way is to compute W as a composition of simpler mappings. 

17) The optimization can be performed by an MG procedure. This is an optimization 

problem with several local minima usually. See [11] for an outline and application of an 

MG optimization approach usable for several local minima. 

18) The optimization of the algorithm using W leads to robust algorithms. The asymptotic 

convergence rates can be accurately predicted. Worst cases can be found. 

The behavior predicted by W was accurately reproduced by a program implementing 

the two level algorithm. 
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